Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American Midcontinent

Paleobiology ◽  
2001 ◽  
Vol 27 (4) ◽  
pp. 646-668 ◽  
Author(s):  
Thomas D. Olszewski ◽  
Mark E. Patzkowsky

Using museum and literature data, we characterize faunal turnover in bivalves and brachiopods of the North American Midcontinent over approximately 12.5 Myr spanning the Pennsylvanian/Permian boundary. The two groups experienced indistinguishable rates of background faunal turnover but differed in the type and timing of elevated turnover episodes. Bivalves underwent an episode of elevated first appearance in the Missourian Series whereas brachiopods underwent an episode of elevated disappearance in the Wolfcampian Series. In neither group does turnover history strongly correlate to long-term changes in basinal lithofacies, which reflect evolution of regional climate. Comparison with other time intervals and basins suggests that magnitude and frequency of turnover episodes during the late Paleozoic was intermediate between the more episodic early Paleozoic and less episodic Mesozoic.

2020 ◽  
Vol 125 (7) ◽  
Author(s):  
Yuan‐Yuan Xu ◽  
Wei‐Jun Cai ◽  
Rik Wanninkhof ◽  
Joseph Salisbury ◽  
Janet Reimer ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 167
Author(s):  
Norman Dreier ◽  
Edgar Nehlsen ◽  
Peter Fröhle ◽  
Diana Rechid ◽  
Laurens M. Bouwer ◽  
...  

In this study, the projected future long-term changes of the local wave conditions at the German Baltic Sea coast over the course of the 21st century are analyzed and assessed with special focus on model agreement, statistical significance and ranges/spread of the results. An ensemble of new regional climate model (RCM) simulations with the RCM REMO for three RCP forcing scenarios was used as input data. The outstanding feature of the simulations is that the data are available with a high horizontal resolution and at hourly timesteps which is a high temporal resolution and beneficial for the wind–wave modelling. A new data interface between RCM output data and wind–wave modelling has been developed. Suitable spatial aggregation methods of the RCM wind data have been tested and used to generate input for the calculation of waves at quasi deep-water conditions and at a mean water level with a hybrid approach that enables the fast compilation of future long-term time series of significant wave height, mean wave period and direction for an ensemble of RCM data. Changes of the average wind and wave conditions have been found, with a majority of the changes occurring for the RCP8.5 forcing scenario and at the end of the 21st century. At westerly wind-exposed locations mainly increasing values of the wind speed, significant wave height and mean wave period have been noted. In contrast, at easterly wind-exposed locations, decreasing values are predominant. Regarding the changes of the mean wind and wave directions, westerly directions becoming more frequent. Additional research is needed regarding the long-term changes of extreme wave events, e.g., the choice of a best-fit extreme value distribution function and the spatial aggregation method of the wind data.


1993 ◽  
Vol 30 (4) ◽  
pp. 776-786
Author(s):  
G. Murthy ◽  
R. Pätzold

The Pridolian Clam Bank Formation around Lourdes Cove on the Port au Port Peninsula, western Newfoundland, underwent deformation during the Acadian orogeny. As a result, some of the beds were overturned, but the stratification planes can be accurately determined everywhere. Paleomagnetic studies of the Clam Bank Formation have yielded three well-defined components of magnetization, all acquired subsequent to the deformation event: component A with D = 337.3°, I = −28.3°, (N = 16 sites, k = 25.3, α95 = 7.5°), with a corresponding paleopole at 23.2°N, 145.0°E (dp, dm = 4.5°, 8.2°); component B with D = 172.9°, I = 5.7° (N = 35 specimens, k = 10.2, α95 = 6.4°), with a corresponding paleopole at 38.2°N, 130.1°E (dp, dm = 3.2°, 6.4°); component C with D = 350.4°, I = 69.8° (N = 33 specimens, k = 8.9, α95 = 8.9°). A pre-Mesozoic origin of the A and B components is indicated by the presence of normal and reversed components in specific sites; by the lack of correspondence between the A and B paleopoles and the Mesozoic and later pole positions from the Appalachians and the North American craton; and by agreement with Paleozoic poles from the region. The A component was probably acquired immediately after deformation during the Acadian orogeny. The B component is probably a chemical remanence that was acquired during Permo-Carboniferous (Kiaman) time. The C component is of recent origin, probably acquired in the present Earth's field. Paleomagnetic data from western Newfoundland are used in a localized setting to construct a paleopole sequence and to estimate paleolatitudes for western Newfoundland during the Paleozoic. Keeping in mind the paucity of data for Siluro-Devonian age from this region, western Newfoundland seems to have been at its southernmost position at the end of the Ordovician and to have occupied equatorial latitudes during the Permo-Carboniferous. The paleolatitude trend suggests that this block, which is part of the North American craton, moved in a southerly direction during the early Paleozoic and in a northerly direction during the middle and late Paleozoic.


2008 ◽  
Vol 39 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Maris Klavins ◽  
Valery Rodinov

The study of changes in river discharge is important for regional climate variability characterization and for development of an efficient water resource management system. The hydrological regime of rivers and their long-term changes in Latvia were investigated. Four major types of river hydrological regimes, which depend on climatic and physicogeographic factors, were characterized. These factors are linked to the changes observed in river discharge. Periodic oscillations of discharge, and low- and high-water flow years are common for the major rivers in Latvia. A main frequency of river discharge regime changes of about 20 and 13 years was estimated for the studied rivers. A significant impact of climate variability on the river discharge regime has been found.


2007 ◽  
Vol 135 (6) ◽  
pp. 2168-2184 ◽  
Author(s):  
Gregory L. West ◽  
W. James Steenburgh ◽  
William Y. Y. Cheng

Abstract Spurious grid-scale precipitation (SGSP) occurs in many mesoscale numerical weather prediction models when the simulated atmosphere becomes convectively unstable and the convective parameterization fails to relieve the instability. Case studies presented in this paper illustrate that SGSP events are also found in the North American Regional Reanalysis (NARR) and are accompanied by excessive maxima in grid-scale precipitation, vertical velocity, moisture variables (e.g., relative humidity and precipitable water), mid- and upper-level equivalent potential temperature, and mid- and upper-level absolute vorticity. SGSP events in environments favorable for high-based convection can also feature low-level cold pools and sea level pressure maxima. Prior to 2003, retrospectively generated NARR analyses feature an average of approximately 370 SGSP events annually. Beginning in 2003, however, NARR analyses are generated in near–real time by the Regional Climate Data Assimilation System (R-CDAS), which is identical to the retrospective NARR analysis system except for the input precipitation and ice cover datasets. Analyses produced by the R-CDAS feature a substantially larger number of SGSP events with more than 4000 occurring in the original 2003 analyses. An oceanic precipitation data processing error, which resulted in a reprocessing of NARR analyses from 2003 to 2005, only partially explains this increase since the reprocessed analyses still produce approximately 2000 SGSP events annually. These results suggest that many NARR SGSP events are not produced by shortcomings in the underlying Eta Model, but by the specification of anomalous latent heating when there is a strong mismatch between modeled and assimilated precipitation. NARR users should ensure that they are using the reprocessed NARR analyses from 2003 to 2005 and consider the possible influence of SGSP on their findings, particularly after the transition to the R-CDAS.


Paleobiology ◽  
2020 ◽  
pp. 1-14
Author(s):  
Michelle M. Casey ◽  
Erin E. Saupe ◽  
Bruce S. Lieberman

Abstract Geographic range size and abundance are important determinants of extinction risk in fossil and extant taxa. However, the relationship between these variables and extinction risk has not been tested extensively during evolutionarily “quiescent” times of low extinction and speciation in the fossil record. Here we examine the influence of geographic range size and abundance on extinction risk during the late Paleozoic (Mississippian–Permian), a time of “sluggish” evolution when global rates of origination and extinction were roughly half those of other Paleozoic intervals. Analyses used spatiotemporal occurrences for 164 brachiopod species from the North American midcontinent. We found abundance to be a better predictor of extinction risk than measures of geographic range size. Moreover, species exhibited reductions in abundance before their extinction but did not display contractions in geographic range size. The weak relationship between geographic range size and extinction in this time and place may reflect the relative preponderance of larger-ranged taxa combined with the physiographic conditions of the region that allowed for easy habitat tracking that dampened both extinction and speciation. These conditions led to a prolonged period (19–25 Myr) during which standard macroevolutionary rules did not apply.


Sign in / Sign up

Export Citation Format

Share Document